Friday

QoS and Traffic Shaping



VoIP has strict performance requirements. The factors that affect the quality of data transmission are different from those affecting the quality of voice transmission. For example, data generally is not affected by small delays. The quality of voice transmissions, on the other hand, is lowered by relatively small amounts of delay. VoIP call quality depends on three network factors, as mentioned earlier:
  • Latency The time it takes for a voice transmission (or any transmission) to travel from source to destination is increased as packets traverse each security node. Primary latency-producing processes are firewall/NAT traversal, negotiation of long ACLs, and traffic encryption/decryption.
  • Jitter (erratic packet delays) Jitter may be increased, because in many circumstances, jitter is a function of hop count.
  • Packet loss The number of non-QoS-aware routers and firewalls that ignore or fail to properly process Type of Service (ToS) fields in the IP header can influence packet loss.
In the absence of QoS or Traffic shaping, data networks operate on a best-effort delivery basis, which means that all data traffic has equal priority and an equal chance of being delivered in a prompt manner. However, when network congestion occurs, all data traffic has an equal chance of being dropped and/or delayed. When voice data is introduced into a network, it becomes critical that priority is given to the voice packets to insure the expected quality of voice calls. The mechanisms used to accomplish this are generically referred to as traffic shaping.
Traffic shaping is an attempt to organize network traffic in order to optimize or guarantee performance and/or bandwidth. Traffic shaping relies upon concepts such as classification, queue disciplines, scheduling, congestion management, quality of service (QoS), class of service (CoS), and fairness.
Common CoS models include the Differentiated Services Code Point (DiffServ or DSCP, defined in RFC 2474 and others) and IEEE 802.1Q/p. DSCP specifies that each packet is classified upon entry into the network. The classification is carried in the IP packet header, using 6 bits from the deprecated IP type-of-service (ToS) field to carry the classification (code point) information, which ranges from 0 through 63. Generally, the higher number equates to higher priority.
802.1Q defines the open standards for VLAN tagging. Twelve of the 16 bits within the two Tag Control Information bytes are used to tag each frame with a VLAN identification number. 802.1p uses three of the remaining bits (the User Priority bits) in the 802.1Q header to assign one of eight different classes of service (0 = low priority; 8 = high priority).
Quality of Service involves giving preferential treatment of particular classes or flows of traffic primarily by manipulating queues and scheduling. A service quality is then negotiated.
Examples of QoS are CBWFQ (Class Based Weighted Fair Queuing), RSVP (RESERVATION Protocol-RFC 2205), MPLS, (Multi Protocol Label Switching-RFC 1117 and others). CoS, or tagging, is ineffective in the absence of QoS because it can only mark data. QoS relies on those tags or filters to give priority to data streams.
Networks with periods of congestion can still provide excellent voice quality when using an appropriate QoS/CoS policy. The recommendation for switched networks is to use IEEE 802.1p/Q. The recommendation for routed networks is to use DiffServ Code Points (DSCP). The recommendation for mixed networks is to use both.
The main purpose of these technologies is to ensure that application performance remains satisfactory regardless of network conditions. In general, they all work by categorizing traffic into discrete subsets that are processed with different priorities. For this reason, QoS techniques may be useful in protecting VoIP networks from a significant security threat—Denial of Service. A number of authors have shown that some VoIP architecture components including IP telephones, SIP proxies, and H.323 gateways may freeze and crash when attempting to process a high rate of packet traffic. QoS can provide some security for these devices during DoS attack either by prioritizing unauthorized data low and/or by prioritizing VoIP high. This measure (security layer) will mitigate the consequences of a DoS attack on applications that share the same physical bandwidth.
The downside of all this is that traffic shaping is, at times, a stew of poorly interoperable technologies and techniques. This ad hoc nature makes a true end-to-end QoS strategy sometimes difficult to implement. If possible, provide enough bandwidth resources to meet the expected peak demands with a substantial safety margin. Note also that the implementation of some security measures can degrade quality of service.
These security-related complications are bulleted at the beginning of this section, and range from interruption or prevention of call setup by misconfigured firewall rules to encryp-tion-produced latency and delay variation (jitter). There is no single best method at present to optimize traffic shaping on VoIP networks without taking into account the relationship of these technologies with the security measures implemented within your environment.
Related Posts with Thumbnails

Link Exchange