Enterprise Communications Systems Today | PBX Systems for IP Telephony

Today’s enterprise communications market is in a considerable flux caused by major ongoing changes in the technology of core products and the network infrastructure. Notably, voice communications systems are migrating from a time- to a packet-based switching and transmission design. The last major market and product shift occurred in the mid-1970s when the first computer stored program control (SPC) and digital switching communications systems were announced and shipped to replace older generation electromechanical systems. Although every generation believes that product 2upgrades and enhancements occurring in their prime are the most significant ever, telecommunications managers who remember the limited feature and function capabilities available on communications systems 30 years ago may be less impressed with the current market upheaval than industry newcomers who have learned to expect a new generation of products every 18 months from the data networking world.

Today’s typical enterprise voice communications network includes many, if not all, of the following ingredients:

1. A core communications switching system (Private Branch Exchange [PBX] system, Key Telephone System [KTS], or KTS/Hybrid system) that provides dial tone, call setup and teardown functions, and more call processing features than any one customer is likely to use

2. A management system to support fault and configuration operations

3. A call accounting system that analyzes and processes call detail records to generate billing and traffic reports

4. A voice messaging system that offers a wide array of services far beyond a basic answering system

Other widely used products that support basic voice applications in the enterprise include automated attendants, paging systems, and voice announcers. It is naturally assumed, but sometimes overlooked, that each network system user has some type of desktop or mobile telephone to access the core communications switching system. Other stand-alone desktop equipment scattered around the enterprise is likely to include facsimile (fax) machines and modems for dial-up data network access.

Customers with call center system requirements will install, at a minimum:

1. An Automatic Call Distributor (ACD)

2. A Management Information System (MIS)

As the call center requirements become more sophisticated, subsystems and options will be added to the basic ACD. These might include an Interactive Voice Response (IVR) system, an Automatic Speech Recognition (ASR) system, or a Computer Telephony Integration (CTI) application server. Users now routinely expect that all of these call center system elements will gradually merge with the Web server and e-mail server to form a mixed media e-contact center.

Twenty years ago almost none of these products existed beyond the core communications switching system. Small-line-size customers during the early 1980s with basic voice communications requirements would have a KTS or perhaps one of the recently introduced KTS/Hybrid systems. Intermediate and large-line-size customers with more advanced requirements preferred a PBX system, although what counted as advanced capabilities at the time would include features and functions considered basic today, such as Direct Inward Dialing (DID), Call Detail Recording (CDR), and Automatic Route Selection (ARS). These features were once available on only large, sophisticated, and relatively expensive PBX systems, but they can now be found on KTS products targeted at very small customer locations. The trickle-down theory of KTS/PBX feature and function options says that optionally priced advanced features and functions designed primarily for customers of large PBX systems eventually become standard offerings on entry-level KTSs.

The number of available features on PBX systems has increased exponentially since the first SPC models were introduced in the 1970s. A leading-edge PBX system marketed in 1980 had a software package with about 100 features for station, attendant, and system operations. By 1990 the number of features had more than doubled. Today a typical PBX system boasts more than 500 features, including optional hospitality, networking, and ACD options, and today’s typical KTS/Hybrid system offers more performance options than any PBX system in 1980. Despite the significant increase in features designed for desktop access and implementation, the majority of PBX station users (i.e., people with phones on their desks) use fewer than ten features on an everyday basis. Ironically, today’s typical station user may use fewer features than he would have used 20 years ago because many once-popular features, such as call pick-up and automatic callback, are rarely implemented. One reason for the decline in use of once common desktop features is the prevalence of voice messaging systems that preclude the use of many manually operated features for call coverage situations.

As a result, today’s PBX developers continue to write new feature software programs for the non-typical station user. Studies show that most station users implement about six features on an everyday basis, and features in general use are limited to hold, transfer, conference, and a few others. However, system designers cannot assume that the set of features in general use will be the same for every station user. Many features are used by a small number of system subscribers, but they are no less important than those used by the majority. For example, a feature such as Flexible Night Service may be used only by the system’s sole attendant console operator, and the Recent Change History feature may be of value only to the system administrator, but these features are as vital to the few individuals who implement them as Call Forwarding is to a typical desktop telephone station user. Many of the hundreds of PBX features introduced during the past 20 years were developed at the explicit request of customers. When a customer or a small group of customers demanded a new feature, a PBX manufacturer first determined that anticipated demand justified its development. Once offered by a major manufacturer, the new feature soon became available on systems from most competitors.

It’s important to note that some perfectly viable features are unique to special categories of customers or station users and may be used by as few as one system subscriber per enterprise. A feature’s value is not determined solely by how many individual station users implement the feature, but also by potential cost savings and productivity improvement at a station, system, or network level.

Of course, most customers do not have stringent demands on PBX system design architecture attributes; they’re looking for basic growth and redundancy requirements. A station user who doesn’t have telecommunications system acquisition or management responsibilities cares nothing about the technical underpinnings of the telephone system he’s using. He picks up the telephone handset, listens for dial tone, punches a number or activates a feature, and is satisfied by the experience almost every time. As long as that’s true, the station user won’t be asking whether the system has analog or digital transmission, circuit-switched or packet-switched connections, a proprietary software operating system, or a standard off-the-shelf Windows solution. People who should care about PBX system technology and reliability standards, applications support, and future product direction are the telecommunications manager, voice/data networks director, or CIO.
Related Posts with Thumbnails

Link Exchange