Sunday

PSTN Protocol Security


If you thought that PSTN protocols are more secure than the IP protocols riding on PSTN access circuits, then prepare to be shocked. In some respects, one of the greatest threats to the Internet is the PSTN itself.

SS7 and Other ITU-T Signaling Security

Despite the fact that ITU-T signaling protocols prior to SS7 are notoriously insecure, they continue to be deployed around the world along with older switching equipment that is vulnerable to toll fraud, eavesdropping, and other risks. If your VoIP system will be interfacing with such equipment, take countermeasures to reduce potential exposure and liability, set alarms, and review logs.
That is not to suggest that SS7 is particularly secure, but it is much harder for a subscriber to inject signaling into an SS7 network. That being said, the primary threat for SS7 networks are the peering arrangements (particularly among CLEC partners) for injection of false and/or fraudulent signaling and other messaging information. SS7 as currently defined does not have policy controls built in to address this issue. The risks and countermeasures were summarized quite well by the 3GPP SA WG3 Technical Specification Group in January 2000 for 3G TR 33.900 V1.2.0:
The security of the global SS7 network as a transport system for signaling messages e.g. authentication and supplementary services such as call forwarding is open to major compromise.
The problem with the current SS7 system is that messages can be altered, injected or deleted into the global SS7 networks in an uncontrolled manner. In the past, SS7 traffic was passed between major PTOs covered under treaty organization and the number of operators was relatively small and the risk of compromise was low
Networks are getting smaller and more numerous. Opportunities for unintentional mishaps will increase, as will the opportunities for hackers and other abusers of networks. With the increase in different types of operators and the increase in the number of interconnection circuits there is an ever-growing loss of control of security of the signaling networks.
There is also exponential growth in the use of interconnection between the telecommunication networks and the Internet. The IT community now has many protocol converters for conversion of SS7 data to IP, primarily for the transportation of voice and data over the IP networks. In addition new services such as those based on IN will lead to a growing use of the SS7 network for general data transfers.
There have been a number of incidents from accidental action, which have damaged a network. To date, there have been very few deliberate actions. The availability of cheap PC based equipment that can be used to access networks and the ready availability of access gateways on the Internet will lead to compromise of SS7 signaling and this will affect mobile operators.
The risk of attack has been recognized in the USA at the highest level of the President’s office indicating concern on SS7. It is understood that the T1, an American group is seriously considering the issue. For the network operator there is some policing of incoming signaling on most switches already, but this is dependent on the make of switch as well as on the way the switch is configured by operators.
Some engineering equipment is not substantially different from other advanced protocol analyzers in terms of its fraud potential, but is more intelligent and can be programmed more easily. The SS7 network as presently engineered is insecure. It is vitally important that network operators ensure that signaling screening of SS7 incoming messages takes place at the entry points to their networks and that operations and maintenance systems alert against unusual SS7 messages. There are a number of messages that can have a significant effect on the operation of the network and inappropriate messages should be controlled at entry point.
Network operators or network security engineers should on a regular basis carry out monitoring of signaling links for these inappropriate messages. In signing agreements with roaming partners and carrying out roaming testing, review of messages and also to seek appropriate confirmation that network operators are also screening incoming SS7 messages their networks to ensure that no rogue messages appear.
In summary there is no adequate security left in SS7. Mobile operators need to protect themselves from attack from hackers and inadvertent action that could stop a network or networks operating correctly.
Bottom line: Just because SS7 is harder for subscribers to crack doesn’t mean it is secure overall. SS7 peering in the PSTN is not nearly as robust as its BGP equivalent on the Internet, and this has the potential for dire consequences if it were to be exploited maliciously. It’s not yet clear if or how the ITU-T plans to address these concerns directly in a revision to SS7, although a T1S1 SS7 Security Standard was proposed at one time as part of an overall Study Group 17 (SG-17) effort. RFC 3788, Security Considerations for SIGTRAN protocols, was published by the Internet Engineering Task Force (IETF) in June 2004, and suggests the use of specific TLS and IPSEC profiles when using SS7 over IP, though it also notes that the “Peer To Peer” challenge still exists with SS7. The Network Interconnection Interoperability Forum (NIIF) within the Alliance for Telecommunications Industry Solutions (ATIS) has published many guidelines on the topic of secure interconnections (available to members or to the public for a fee). The good news is that unlike the Internet’s in-band signaling model, which is vulnerable to direct attack, the SS7 signaling network is out of band to the voice and data communication it carries.

ISUP and QSIG Security

Automatic Number Identification (ANI)-based security mechanisms can be spoofed in both directions, although some carriers claim to have clamped down on this practice (I'm not convinced this can be done). This can be used to create false Caller-ID data to subscribers. If your organization uses ANI to verify identity (as a very large credit card user has been known to do), you are asking for trouble. It’s only slightly more difficult than spoofing an e-mail address if you know what you’re doing, so tread carefully here.
Other ISUP and QSIG fields have similar problems, so be very careful with any trust assumptions you make with these protocols. Always assume that CLASS services like distinctive ringing, selective call acceptance, selective call forward, and so on will be fooled by ANI spoofing and similar ISUP or SSIG attacks.
Related Posts with Thumbnails

Link Exchange